

HLA-RTI 1.3-Next Generation
i

B Class RTI::FederateAmbassador... ii

B.1 FEDERATION MANAGEMENT... III
B.1.1 announceSynchronizationPoint()...B.1-4
B.1.2 federationNotRestored() ..B.1-5
B.1.3 federationNotSaved()...B.1-6
B.1.4 federationRestoreBegun()..B.1-7
B.1.5 federationRestored() ..B.1-8
B.1.6 federationSaved()...B.1-9
B.1.7 federationSynchronized()...B.1-10
B.1.8 initiateFederateRestore()...B.1-11
B.1.9 initiateFederateSave() ...B.1-12
B.1.10 requestFederationRestoreFailed()...B.1-13
B.1.11 requestFederationRestoreSucceeded() ..B.1-14
B.1.12 synchronizationPointRegistrationFailed() ..B.1-15
B.1.13 synchronizationPointRegistrationSucceeded() ..B.1-16

B.2 DECLARATION MANAGEMENT... 1
B.2.1 startRegistrationForObjectClass() ..B.2-1
B.2.2 stopRegistrationForObjectClass()...B.2-2
B.2.3 turnInteractionsOff()..B.2-3
B.2.4 turnInteractionsOn()..B.2-4

B.3 OBJECT MANAGEMENT.. 1
B.3.1 attributesInScope() ..B.3-1
B.3.2 attributesOutOfScope()..B.3-2
B.3.3 discoverObjectInstance() ...B.3-3
B.3.4 provideAttributeValueUpdate() ...B.3-4
B.3.5 receiveInteraction() ...B.3-5
B.3.6 reflectAttributeValues() ...B.3-6
B.3.7 removeObjectInstance()...B.3-8
B.3.8 turnUpdatesOffForObjectInstance() ...B.3-9
B.3.9 turnUpdatesOnForObjectInstance()..B.3-10

B.4 OWNERSHIP MANAGEMENT ... 1
B.4.1 attributeIsNotOwned()...B.4-1
B.4.2 attributeOwnedByRTI() ...B.4-2
B.4.3 attributeOwnershipAcquisitionNotification() ..B.4-3
B.4.4 attributeOwnershipDivestitureNotification()...B.4-4
B.4.5 attributeOwnershipUnavailable()..B.4-5
B.4.6 confirmAttributeOwnershipAcquisitionCancellation() ...B.4-6
B.4.7 informAttributeOwnership() ..B.4-7
B.4.8 requestAttributeOwnershipAssumption()...B.4-8
B.4.9 requestAttributeOwnershipRelease()...B.4-9

B.5 TIME MANAGEMENT.. 1
B.5.1 requestRetraction() ..B.5-1
B.5.2 timeAdvanceGrant() ..B.5-2
B.5.3 timeConstrainedEnabled()...B.5-3
B.5.4 timeRegulationEnabled() ...B.5-4

HLA-RTI 1.3 Next Generation
ii

B Class
RTI::FederateAmbassador

HLA-RTI 1.3 Next Generation

B.1 Federation Management

Federation Management announceSynchronizationPoint()

HLA-RTI 1.3-Next Generation
B.1-4

B.1.1 announceSynchronizationPoint()
RTI 1.3-NG
ABSTRACT

This service informs the federate that synchronization based on
some federation-defined semantics has been requested

HLA IF SPECIFICATION
This method realizes the “Announce Synchronization Point”
Federation Management service as specified in the HLA Interface
Specification (§4.8 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

announceSynchronizationPoint (
const char *label,
const char *tag

)
throw (

RTI::FederateInternalError
)

ARGUMENTS
label

a string used to uniquely identify the synchronization point
and convey federation-defined semantics

tag
the “user-supplied tag” passed to the invocation
registerFederationSynchronizationPoint() used to
create the synchronization point; this string is not interpreted
by the RTI

DESCRIPTION
Synchronization points provide a mechanism for federates to
schedule checkpoints with federation-defined semantics, while
relying on the RTI to perform the bookkeeping associated with
determining when the checkpoint is achieved by the desired set of
federates.
This callback informs a federate that it has been requested to
participate in a synchronization point. The synchronization point
may be a universal synchronization point that applies to all
federates or a specified synchronization point in which the federate
has been explicitly included. The semantics of the synchronization
point are defined by the federation and communicated through the
associated label and user-supplied tag.
The federate should use the
synchronizationPointAchieved() service to notify the
federation when it has met the synchronization criteria. When all
federates included in the synchronization point have achieved
synchronization, each included federate will receive a
federationSynchronized() callback.
Depending on the semantics of a synchronization point, it may or
may not be appropriate for a federate to continue operation while
waiting for synchronization to be achieved. The RTI places no
restrictions on a federation pending synchronization; federation
developers are free to implement their own restrictions based on
federation-specific synchronization semantics. At a minimum, all
federates must continue to invoke tick() so that internal RTI
communications may be serviced.
For specified synchronization points, throwing an exception from
this method will result in the synchronization point never being
attained. For universal synchronization points, the synchronization

point may be reannounced to the federate upon the subsequent
joining of federates to the federation.
If a federate resigns before achieving an announced
synchronization point, the federate is removed from consideration
for that synchronization point (i.e., it is assumed to have met the
synchronization criteria).

RETURN VALUES
A non-exceptional return indicates that the federate understands
the synchronization request and will subsequently notify the RTI
when the synchronization criteria have been met.

EXCEPTIONS
RTI::FederateInternalError

An error internal to the federate has occurred.

SEE ALSO
RTI::FederateAmbassador

federationSynchronized()
RTI::RTIambassador

registerFederationSynchronizationPoint()
resignFederationExecution()
synchronizationPointAchieved()

Federation Management federationNotRestored()

HLA-RTI 1.3-Next Generation
B.1-5

B.1.2 federationNotRestored()
RTI 1.3-NG
ABSTRACT

This service informs the federate that a federation-wide restoration
attempt has completed, but that one or more federates have failed
to correctly restore their state.

HLA IF SPECIFICATION
This method (in conjunction with federationRestored())
realizes the “Federation Restored” Federation Management service
as specified in the HLA Interface Specification (§4.21 in version
1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

federationNotRestored ()
throw (

RTI::FederateInternalError
)

DESCRIPTION
This callback informs a federate of the fact that a federation-wide
restoration has ended unsuccessfully (i.e., one or more of the
restoring federates invoked the
federateRestoreNotComplete() service to end the restoration,
or one or more LRCs were unable to restore their internal state.)
Only one restore may be in progress simultaneously, so the subject
of this callback is always the most recent restoration attempt as
announced via a initiateFederateRestore() callback.
The failure of a single federate or LRC does not preclude the
successful restoration of other federates or LRCs, so the state of
the federation after a failed restoration attempt is not well defined.
Upon receipt of such a notification, the federate is no longer in a
suspended state and may resume normal operation.

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
the failure to restore federation state. The federate may resume
normal operation.

EXCEPTIONS
RTI::FederateInternalError

An error internal to the federate has occurred.

SEE ALSO
RTI::FederateAmbassador

federationRestoreBegun()
federationRestored()
initiateFederateRestore()

RTI::RTIambassador
federateRestoreComplete()
federateRestoreNotComplete()
requestFederationRestore()

Federation Management federationNotSaved()

HLA-RTI 1.3-Next Generation
B.1-6

B.1.3 federationNotSaved()
RTI 1.3-NG
ABSTRACT

This service informs the federate that a federation-wide save
attempt has completed, but that one or more federates have failed
to correctly save their state.

HLA IF SPECIFICATION
This method (in conjunction with federationSaved()) realizes
the “Federation Saved” Federation Management service as
specified in the HLA Interface Specification (§4.15 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

federationNotSaved()
throw (

RTI::FederateInternalError
)

DESCRIPTION
This callback informs a federate of the fact that a federation-wide
restoration has ended unsuccessfully. Only one restore may be in
progress simultaneously, so the subject of this callback is always
the most recent restoration attempt as announced via an
initiateFederateRestore() callback.
The failure of a single federate or LRC does not preclude the
successful restoration of other federates or LRCs, so the state of
the federation after a failed restoration attempt is not well defined.
Upon receipt of such a notification, the federate is no longer in a
suspended state and may resume normal operation.

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
the failure to save federation state. The federate may resume
normal operation.

EXCEPTIONS
RTI::FederateInternalError

An error internal to the federate has occurred.

SEE ALSO
RTI::FederateAmbassador

federationSaved()
initiateFederateSave()

RTI::RTIambassador
federateSaveComplete()
federateSaveNotComplete()
requestFederationSave()

Federation Management federationRestoreBegun()

HLA-RTI 1.3-Next Generation
B.1-7

B.1.4 federationRestoreBegun()
RTI 1.3-NG
ABSTRACT

This service advises the federate that a federation-wide restoration
has begun. The federate is suspended from making service
invocations that would change the state of the federation until the
restoration has completed.

HLA IF SPECIFICATION
This service realizes the “Federation Restore Begun” Federation
Management service as specified in the HLA Interface
Specification (§4.18 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

federationRestoreBegun ()
throw (

RTI::FederateInternalError
)

DESCRIPTION
This callback instructs a federate to refrain from making service
invocations that would change the state of the local LRC or the
federation, in anticipation of a pending restoration attempt. The
federation-wide restoration then proceeds according to the
following sequence of events:
1. When all federates have been suspended in this fashion, the

LRCs comprising the federation will commence unmarshaling
their internal state from disk.

2. When all LRCs have completed unmarshaling their respective
states, each federate will be instructed to restore its federate-
managed state via an initiateFederateRestore()
callback.

3. When all federates have completed the restoration of their
federate-managed state (as reported using the
federateRestoreComplete() or
federateRestoreNotComplete() services), each federate
will receive a federationRestored() or
federationNotRestored() callback. Upon receipt of
such, a federate may resume normal operation.

The LRC will refrain from delivering events to the federate during
the restoration process. Following the restoration, any events
queued in the restored LRC state will be delivered to the federate
at the appropriate time.
The federate must continue to call tick() so that internal RTI
communications may continue to be serviced.

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
the restoration and will suspend normal operation pending further
notification.

EXCEPTIONS
RTI::FederateInternalError

An error internal to the federate has occurred.

SEE ALSO
RTI::FederateAmbassador

initiateFederateRestore()
RTI::RTIambassador

requestFederationRestore()

Federation Management federationRestored()

HLA-RTI 1.3-Next Generation
B.1-8

B.1.5 federationRestored()
RTI 1.3-NG
ABSTRACT

This service informs a federate that the currently outstanding
federation-wide restoration attempt has completed successfully.

HLA IF SPECIFICATION
This method (in conjunction with federationNotRestored())
realizes the “Federation Restored” Federation Management service
as specified in the HLA Interface Specification (§4.21 in version
1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

federationRestored ()
throw (

RTI::FederateInternalError
)

DESCRIPTION
This callback informs a federate of the fact that a federation-wide
restoration has ended successfully (i.e. all restoring federates
invoked the federateRestoreComplete() service and all LRCs
successfully restored their internal state.) Only one restore may be
in progress simultaneously, so the subject of this callback is always
the most recent restoration attempt as announced via an
initiateFederateRestore() callback.
Upon receipt of such a notification, the federate is no longer in a
suspended state and may resume normal operation.

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
the successful completion of the federation-wide restoration. The
federate may resume normal operation.

EXCEPTIONS
RTI::FederateInternalError

An error internal to the federate has occurred.

SEE ALSO
RTI::FederateAmbassador

federationRestoreBegun()
federationNotRestored()
initiateFederateRestore()

RTI::RTIambassador
federateRestoreComplete()
federateRestoreNotComplete()
requestFederationRestore()

Federation Management federationSaved()

HLA-RTI 1.3-Next Generation
B.1-9

B.1.6 federationSaved()
RTI 1.3-NG
ABSTRACT

This service informs a federate that the currently outstanding
federation-wide save attempt has completed successfully.

HLA IF SPECIFICATION
This method (in conjunction with federationNotSaved())
realizes the “Federation Saved” Federation Management service as
specified in the HLA Interface Specification (§4.15 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

federationSaved ()
throw (

RTI::FederateInternalError
)

DESCRIPTION
This callback informs a federate of the fact that a federation-wide
save has ended successfully (i.e. all saving federates invoked the
federateSaveComplete() service and all LRCs successfully
save their internal state.) Only one save may be in progress
simultaneously, so the subject of this callback is always the most
recent save attempt as announced via an
initiateFederateSave() callback.
Upon receipt of such a notification, the federate is no longer in a
suspended state and may resume normal operation.

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
the successful completion of the federation-wide save. The
federate may resume normal operation.

EXCEPTIONS
RTI::FederateInternalError

An error internal to the federate has occurred.

SEE ALSO
RTI::FederateAmbassador

federationNotSaved()
initiateFederateSave()

RTI::RTIambassador
federateSaveComplete()
federateSaveNotComplete()
requestFederationSave()

Federation Management federationSynchronized()

HLA-RTI 1.3-Next Generation
B.1-10

B.1.7 federationSynchronized()
RTI 1.3-NG
ABSTRACT

This service informs a federate that a synchronization point
previously announced to the federate has been achieved by all
relevant federates.

HLA IF SPECIFICATION
This method realizes the “Federation Synchronized” Federation
Management service as specified in the HLA Interface
Specification (§4.10 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

federationSynchronized (
const char *label

)
throw (

RTI::FederateInternalError
)

ARGUMENTS
label

string label used to distinguish among simultaneously active
synchronization points

DESCRIPTION
Synchronization points are a generalization of the pause/resume
capabilities featured in early revisions of HLA. They provide a
mechanism for federates to schedule checkpoints with federation-
defined semantics, while relying on the RTI to perform the
bookkeeping associated with determining when the checkpoint is
achieved by the desired set of federates.
This callback notifies a federate that a synchronization point has
been achieved, i.e.:

• For a universal synchronization point, all active federates in
the federation (including recently joined federates) have
achieved the synchronization point.

• For a specified synchronization point, all federates explicitly
included in the synchronization point at registration have
resigned or achieved the synchronization point.

The synchronization label should correspond to a synchronization
point that has been previously announced to the federate through
an announceSynchronizationPoint() callback and attained
by the federate, as reported using
synchronizationPointAchieved() service.
The semantics of the synchronization are defined by the federation
and communicated through the synchronization-point label and
associated user-supplied tag.
After federation-wide attainment of a synchronization point, the
synchronization-point label may be reused.

RETURN VALUES
A non-exceptional return indicates that the federate recognizes the
synchronization-point label and acknowledges the synchronization.

EXCEPTIONS
RTI::FederateInternalError

An error internal to the federate has occurred.

SEE ALSO

RTI::FederateAmbassador
announceSynchronizationPoint()

RTI::RTIambassador
registerFederationSynchronizationPoint()
synchronizationPointAchieved()

Federation Management initiateFederateRestore()

HLA-RTI 1.3-Next Generation
B.1-11

B.1.8 initiateFederateRestore()
RTI 1.3-NG
ABSTRACT

This service instructs a federate to restore its federate-managed
state from the saved state associated with a specified label and
federate handle.

HLA IF SPECIFICATION
This service realizes the “Initiate Federate Restore” Federation
Management service as specified in the HLA Interface
Specification (§4.19 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

initiateFederateRestore (
const char *label,
RTI::FederateHandle handle

)
throw (

RTI::SpecifiedSaveLabelDoesNotExist,
RTI::CouldNotRestore,
RTI::FederateInternalError

)

ARGUMENTS
label

a string label associated with a previously saved named
federation state

handle
the new handle associated with the federate after restoration;
this handle should correspond to a saved state for a federate of
the same type as the current federate

DESCRIPTION
This callback instructs the federate to begin restoring its federate-
managed state from a previously saved state associated with the
specified label and federate handle. The federate will have been
previously suspended via a federationRestoreBegun()
callback and will remain suspended until the federation-wide
restoration has completed. Prior to the issuance of this callback,
the LRC associated with the federate will have restored its internal
state based on the same save label and federate handle.
The federate handle will correspond to a federate in the saved
federation of the same type as the active federate, as distinguished
by the “name” argument to joinFederationExecution().
These names should be chosen in such a way as to ensure that a
federate application will function correctly when restored to a
saved LRC/federate state associated with any other federate of the
same name.
When the federate has restored its federate-managed state or failed
to do so, it should advise the RTI of such, using the
federateRestoreComplete() or
federateRestoreNotComplete() service, respectively. When
all federates have completed the restoration of their federate-
managed states, each federate will receive a
federationRestored() or federationNotRestored()
callback. Upon receipt of such, a federate may resume normal
operation.

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
the restoration request and will subsequently notify the RTI when

the restoration has been completed.

EXCEPTIONS
RTI::SpecifiedSaveLabelDoesNotExist

The specified save label does not correspond to an existing
labeled saved state.

RTI::CouldNotRestore
The federate recognizes the save label but was unable to
restore its state for some other reason.

RTI::FederateInternalError
An error internal to the federate has occurred.

SEE ALSO
RTI::FederateAmbassador::

federationNotRestored()
federationRestoreBegun()
federationRestored()

RTI::RTIambassador::
getRegion()
requestFederationRestore()

Federation Management initiateFederateSave()

HLA-RTI 1.3-Next Generation
B.1-12

B.1.9 initiateFederateSave()
RTI 1.3-NG
ABSTRACT

This service instructs the federate to save its state as of its current
logical time.

HLA IF SPECIFICATION
This method realizes the “Initiate Federate Save” Federation
Management service as specified in the HLA Interface
Specification (§4.12 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

initiateFederateSave (
const char *label

)
throw (

RTI::UnableToPerformSave,
RTI::FederateInternalError

)

ARGUMENTS
label

string that was passed to invocation of the
RTIambassador::requestFederationSave service that
requested the save.
This parameter is not interpreted by the RTI itself. It
provided as a means for the requesting a federate to specify a
textual description of the reason for the save request or any
other information meaningful in the context of the federation.
The federate must make a copy of this parameter if it wishes
to retain its value after the completion of the call.

DESCRIPTION
This callback instructs a federate to initiate a save of its federate-
managed state as soon as possible. The federate’s state should be
saved to disk in such a way that it may be distinguished:

• from other federate-managed states with the same save label
and a different federate handle

• from other federate-managed states with the same federate
handle and a different save label

The federate is expected to begin saving its federate-managed state
as soon as possible, and to inform the RTI of such using the
federateSaveBegun() service. The federate should
subsequently report success or failure of the save using the
appropriate service.
The federate is suspended from invoking any services that would
change the state of the LRC or the federation during the save
attempt.

RETURN VALUES
A non-exceptional return value indicates that the federate has
acknowledged the save initiation request and will begin saving its
state as soon as possible, notifying the RTI of such using the
federateSaveBegun() service.

NOTES
• If a logical time is associated with the save request, time-

constrained federates will be instructed to save at the appropriate
logical time. Logical time occurs when the set of time-stamp-
ordered events that have been delivered to the federate exactly

matches the set of relevant time-stamp-ordered events occurring in
the federation with time-stamps less than or equal to the logical
time of the save. All federates will be instructed to save only after
all time-constrained federates have reached the logical time of the
save.

• If no logical time is associated with the save request, the
instruction to save will be delivered to each federate as soon as
possible.

• The services used to report success or failure of a save are
federateSaveComplete() and
federateSaveNotComplete(), respectively. The later name is
somewhat of a misnomer, as the method is actually used to indicate
the completion of an unsuccessful save attempt.

• No events will be delivered to the federate while a save is in
progress.

• The federate will remain suspended until the federation-wide save
has been completed. The federate will be notified of such via a
federationSaved() or federationNotSaved() callback.

EXCEPTIONS
RTI::UnableToPerformSave

The federate is unable to perform a save at the current time.
RTI::FederateInternalError

An error internal to the federate has occurred.

SEE ALSO
RTI::FederateAmbassador

 federationNotSaved()
 federationSaved()

RTI::RTIambassador
 federateSaveBegun()
 federateSaveComplete()
 federateSaveNotComplete()
 requestFederationRestore()

requestFederationSave()

Federation Management requestFederationRestoreFailed()

HLA-RTI 1.3-Next Generation
B.1-13

B.1.10 requestFederationRestoreFailed()
RTI 1.3-NG
ABSTRACT

This service informs a federate that a request to attempt to restore
its federation state has been denied.

HLA IF SPECIFICATION
This method (in conjunction with
requestFederationRestoreSucceeded()) realizes the
“Confirm Federation Restoration Request” Federation
Management service as specified in the HLA Interface
Specification (§4.17 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

requestFederationRestoreFailed (
const char *label,
const char *reason)

throw (
RTI::FederateInternalError

)

ARGUMENTS
label

the label associated with the restoration request
reason

a string containing a textual description of the grounds for
denying the request

DESCRIPTION
This service informs a federate that a restoration request that was
the subject of a previous requestFederationRestore()
invocation by the federate has been denied. Restoration requests
are arbitrated by the FedExec and may be denied for the following
reasons:

• a race condition occurred among multiple federates
attempting to initiate a save or restore and the federate’s
request lost

• a valid set of saved LRC states was not located in the
directory given by the RID file parameter
FullPathOfSaveDirectory under the
RTI_FederationExecutive.

• the checksum of the FED file associated with the saved
federation state is not the same as the checksum of the
FED file used by the currently active federation

• there does not exist a function for mapping federate
handles in the saved state to federate handles in the
active federation at the time of the restoration such that:
• the function is total, one-to-one, and onto
• all mappings in the function are between federates

of the same type
RETURN VALUES

A non-exceptional return indicates that the federate acknowledges
that the restoration request has failed.

EXCEPTIONS
RTI::FederateInternalError

An error internal to the federate has occurred.

SEE ALSO
RTI::FederateAmbassador

requestFederationRestoreSucceeded()
RTI::RTIambassador

requestFederationRestore()

Federation Management requestFederationRestoreSucceeded()

HLA-RTI 1.3-Next Generation
B.1-14

B.1.11 requestFederationRestoreSucceeded()
RTI 1.3-NG
ABSTRACT

This service informs a federate that a request to attempt to restore
its federation state has been accepted

HLA IF SPECIFICATION
This method (in conjunction with
requestFederationRestoreFailed()) realizes the “Confirm
Federation Restoration Request” Federation Management service
as specified in the HLA Interface Specification (§4.17 in version
1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

requestFederationRestoreSucceeded (
const char *label

)
throw (

RTI::FederateInternalError
)

ARGUMENTS
label

the save label associated with the successful restoration
request

DESCRIPTION
This service informs a federate that a federation restoration request
previously made by the federate has been accepted by the
FedExec. The restoration process will proceed as detailed in the
description of requestFederationRestore().
Note that this callback does not imply that the restoration itself will
ultimately succeed – only that the request meets the prerequisites.

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
that the restoration request has been accepted.

EXCEPTIONS
RTI::FederateInternalError

An error internal to the federate has occurred.

SEE ALSO
RTI::FederateAmbassador

federationRestoreBegun()
requestFederationRestoreFailed()

RTI::RTIambassador
requestFederationRestore()

Federation Management synchronizationPointRegistrationFailed()

HLA-RTI 1.3-Next Generation
B.1-15

B.1.12 synchronizationPointRegistrationFailed()
RTI 1.3-NG
ABSTRACT

This service informs a federate that an attempt to register a
synchronization point has failed.

HLA IF SPECIFICATION
This method (in conjunction with
synchronizationPointRegistrationSucceeded()) realizes
the “Confirm Synchronization Point Registration” Federation
Management service as specified in the HLA Interface
Specification (§4.7 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

synchronizationPointRegistrationFailed (
const char *label

)
throw (

RTI::FederateInternalError
)

ARGUMENTS
label

the synchronization label associated with the request

DESCRIPTION
Synchronization points are a generalization of the pause/resume
capabilities featured in early revisions of HLA. They provide a
mechanism for federates to schedule checkpoints with federation-
defined semantics, while relying on the RTI to perform the
bookkeeping associated with determining when the checkpoint is
achieved by the desired set of federates.
This callback informs a federate that an attempt by the federate to
register a synchronization point using
registerFederationSynchronizationPoint() did not
succeed. An attempt to register a synchronization point may fail
for the following reasons:

• the synchronization-point label is associated with an
outstanding universal or specified synchronization point that
has been announced to the federate through the
announceSynchronizationPoint() callback

• the synchronization-point label is associated with an
outstanding specified synchronization point that does not
apply to the local federate

• a race condition occurred among multiple federates
attempting to register synchronization points with the same
label but different federate-sets, and the local federate’s
request lost

If the registration failed because of a race condition, the
synchronizationPointRegistrationFailed() callback will
occur asynchronously with respect to the
registerFederationSynchronizationPoint() request (i.e.,
during a subsequent invocation of tick()). Otherwise, the
callback will occur synchronously with respect to the service
invocation; that is to say, before the return of
registerFederationSynchronizationPoint() has returned.
Upon receipt of such a callback, the federate may wish to reregister
the synchronization point with a different label or wait until the
existing synchronization point has been achieved.

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
that the synchronization-point registration has failed.

EXCEPTIONS
RTI::FederateInternalError

An error internal to the federate has occurred.

SEE ALSO
RTI::FederateAmbassador

synchronizationPointRegistrationSucceeded()
RTI::RTIambassador

registerFederationSynchronizationPoint()

Federation Management synchronizationPointRegistrationSucceeded()

HLA-RTI 1.3-Next Generation
B.1-16

B.1.13 synchronizationPointRegistrationSucceeded()
RTI 1.3-NG
ABSTRACT

This service informs a federate that an attempt to register a
synchronization point has succeeded.

HLA IF SPECIFICATION
This method (in conjunction with
synchronizationPointRegistrationFailed()) realizes the
“Confirm Synchronization Point Registration” Federation
Management service as specified in the HLA Interface
Specification (§4.7 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

synchronizationPointRegistrationSucceeded (
const char *label

)
throw (

RTI::FederateInternalError
)

ARGUMENTS
label

the synchronization label associated with the request

DESCRIPTION
Synchronization points are a generalization of the pause/resume
capabilities featured in early revisions of HLA. They provide a
mechanism for federates to schedule checkpoints with federation-
defined semantics, while relying on the RTI to perform the
bookkeeping associated with determining when the checkpoint is
achieved by the desired set of federates.
This callback informs a federate that an attempt by the federate to
register a synchronization point using
registerFederationSynchronizationPoint() has
succeeded. The synchronization process will proceed as detailed
in the description of
registerFederationSynchronizationPoint().
Note that such a callback does not imply that the synchronization
has occurred – only that the synchronization point has been
accepted.
This callback always occurs during a subsequent invocation of
tick() and never synchronously with respect to the
registerFederationSynchronizationPoint() service
invocation.

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
that the synchronization-point registration has succeeded.

EXCEPTIONS
RTI::FederateInternalError

An error internal to the federate has occurred.

SEE ALSO
RTI::FederateAmbassador

announceSynchronizationPoint()
synchronizationPointRegistrationFailed()

RTI::RTIambassador
registerFederationSynchronizationPoint()

B.2 Declaration Management

Declaration Management startRegistrationForObjectClass()

HLA-RTI 1.3-Next Generation
B.2-1

B.2.1 startRegistrationForObjectClass()
RTI 1.3-NG
ABSTRACT

This service advises a federate of the existence of an active
subscriber for an object class that is published by the federate.

HLA IF SPECIFICATION
This method realizes the “Start Registration For Object Class”
Declaration Management service as specified in the HLA Interface
Specification (§5.10 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

startRegistrationForObjectClass (
RTI::ObjectClassHandle theClass

)
throw (

RTI::ObjectClassNotPublished,
RTI::FederateInternalError

)

ARGUMENTS
theClass

the published object class for which remote subscribers exist

DESCRIPTION
The startRegistrationForObjectClass() callback advises
the federate that a remote federate is actively subscribed to the
specified object class (or a superclass) such that the set of
subscribed class-attributes intersects the set of class-attributes
published by the local federate. Subscription regions are not
considered when making such an advisory. Upon receipt of such a
callback, the federate should begin registration and update of
instances of the specified object class.

A stopRegistrationForObjectClass() callback will be
made if all remote active subscribers have unsubscribed or
resigned. At this point, the federate may safely cease registering
and updating instances of the class. Any such activity would be
superfluous in the absence of subscribers. These callbacks are
made strictly for advisory purposes and are not enforced in any
way by the RTI.
A federate may toggle the generation of registration advisories by
its local LRC on and off for the
enableClassRelevanceAdvisorySwitch() and
disableClassRelevanceAdvisorySwitch() services,
respectively.

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
the advisory.

EXCEPTIONS
RTI::ObjectClassNotPublished

The operation attempted requires that the object class be
currently published by the federate.

RTI::FederateInternalError
An error internal to the federate has occurred.

SEE ALSO
RTI::FederateAmbassador::

stopRegistrationForObjectClass()

RTI::RTIambassador::
disableClassRelevanceAdvisorySwitch()
enableClassRelevanceAdvisorySwitch()
getObjectClassName()
subscribeObjectClassAttributes()

Declaration Management stopRegistrationForObjectClass()

HLA-RTI 1.3-Next Generation
B.2-2

B.2.2 stopRegistrationForObjectClass()
RTI 1.3-NG
ABSTRACT

This service advises a federate of the absence of active subscribers
for an object class that is published by the federate.

HLA IF SPECIFICATION
This method realizes the “Stop Registration For Object Class”
Declaration Management service as specified in the HLA Interface
Specification (§5.11 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

stopRegistrationForObjectClass (
RTI::ObjectClassHandle theClass)

throw (
RTI::ObjectClassNotPublished,
RTI::FederateInternalError

)

ARGUMENTS
theClass

the object class for which there are no active subscribers

DESCRIPTION
The startRegistrationForObjectClass() callback advises
the federate that no remote federates are actively subscribed to the
specified object class (or a superclass) such that the set of
subscribed class-attributes intersects the set of class-attributes
published by the local federate. Subscription regions are not
considered when making such an advisory. Upon receipt of such a
callback, the federate may safely cease registering and updating
instances of the class. Any such activity would be superfluous in
the absence of subscribers.
Note that this callback is only made for object classes that have
previously been the subject of a
startRegistrationForObjectClass() callback. A newly
publishing federate should assume the absence of subscribers until
it receives such a callback.
A startRegistrationForObjectClass() callback will be
made if a remote federate makes a subscription that intersects the
local federate’s publication. At this point, the federate should
begin registration and update of instances of the specified object
class. These callbacks are made strictly for advisory purposes and
are not enforced in any way by the RTI.
A federate may toggle the generation of registration advisories by
its local LRC on and off for using the
enableClassRelevanceAdvisorySwitch() and
disableClassRelevanceAdvisorySwitch() services,
respectively.

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
the advisory.

EXCEPTIONS
RTI::ObjectClassNotPublished

The operation attempted requires that the object class be
currently published by the federate.

RTI::FederateInternalError
An error internal to the federate has occurred.

SEE ALSO
RTI::FederateAmbassador::

startRegistrationForObjectClass()
RTI::RTIambassador::

disableClassRelevanceAdvisorySwitch()
enableClassRelevanceAdvisorySwitch()
getObjectClassName()
subscribeObjectClassAttributes()

Declaration Management turnInteractionsOff()

HLA-RTI 1.3-Next Generation
B.2-3

B.2.3 turnInteractionsOff()
RTI 1.3-NG
ABSTRACT

This service advises a federate of the absence of active subscribers
for an interaction class published by the federate.

HLA IF SPECIFICATION
This service realizes the “Turn Interactions Off” Declaration
Management service as specified in the HLA Interface
Specification (§5.13 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

turnInteractionsOff (
RTI::InteractionClassHandle theHandle

)
throw (

RTI::InteractionClassNotPublished,
RTI::FederateInternalError

)

ARGUMENTS
theHandle

the interaction class for which there are no remote active
subscribers

DESCRIPTION
The turnInteractionsOff() callback advises the federate that
no remote federates are currently actively subscribing to the
specified interaction class or a subclass. The federate may safely
refrain from generating interactions of the specified class: such
interactions would be superfluous in the absence of an active
subscriber. Subscription regions are not considered when making
such an advisory.
Note that this callback is only made for interaction classes that
have previously been the subject of a turnInteractionsOn()
callback. A newly publishing federate should assume the absence
of subscribers until it receives such a callback.

A turnInteractionsOn() callback will be made if a remote
federate subsequently actively subscribes to the interaction class or
a subclass. At this point, the federate should begin generation of
instances of the specified interaction class. These callbacks are
made strictly for advisory purposes and are not enforced in any
way by the RTI.
A federate may toggle the generation of interaction class advisories
by its local LRC on and off using the
enableInteractionRelevanceAdvisorySwitch() and
disableInteractionRelevanceAdvisorySwitch() services,
respectively.

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
the advisory.

EXCEPTIONS
RTI::InteractionClassNotPublished

The operation attempted requires that the interaction class be
currently published by the federate.

RTI::FederateInternalError
An error internal to the federate has occurred.

SEE ALSO
RTI::FederateAmbassador::

turnInteractionsOn()
RTI::RTIambassador::

disableInteractionRelevanceAdvisorySwitch()
enableInteractionRelevanceAdvisorySwitch()
getInteractionClassName()
publishInteractionClass()
subscribeInteractionClass()

Declaration Management turnInteractionsOn()

HLA-RTI 1.3-Next Generation
B.2-4

B.2.4 turnInteractionsOn()
RTI 1.3-NG
ABSTRACT

This service advises a federate of the presence of active subscribers
for an interaction class published by the federate.

HLA IF SPECIFICATION
This method realizes the “Turn Interactions On” Declaration
Management service as specified in the HLA Interface
Specification (§5.12 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

turnInteractionsOn (
RTI::InteractionClassHandle theHandle

)
throw (

RTI::InteractionClassNotPublished,
RTI::FederateInternalError

)

ARGUMENTS
theHandle

the interaction class for which active subscribers exist

DESCRIPTION
The turnInteractionsOn() callback advises the federate that a
remote federate is actively subscribed to the specified interaction
class or a superclass. Subscription regions are not considered
when making such an advisory. Upon receipt of such a callback,
the federate should begin generating instances of the specified
interaction class.
A turnInteractionsOff() callback will be made if all remote
active subscribers have unsubscribed or resigned. At this point, the
federate may safely cease generating instances of the interaction
class: any such activity would be superfluous in the absence of
subscribers. These callbacks are made strictly for advisory
purposes and are not enforced in any way by the RTI.
A federate may toggle the generation of interaction class advisories
by its local LRC on and off using the
enableInteractionRelevanceAdvisorySwitch() and
disableInteractionRelevanceAdvisorySwitch() services,
respectively.

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
the advisory.

EXCEPTIONS
RTI::InteractionClassNotPublished

The operation attempted requires that the interaction class be
currently published by the federate.

RTI::FederateInternalError
An error internal to the federate has occurred.

SEE ALSO
RTI::FederateAmbassador::

turnInteractionsOff()
RTI::RTIambassador::

disableInteractionRelevanceAdvisorySwitch()
enableInteractionRelevanceAdvisorySwitch()
getInteractionClassName()

publishInteractionClass()
subscribeInteractionClass()

B.3 Object Management

Declaration Management attributesInScope()

HLA-RTI 1.3-Next Generation
B.3-1

B.3.1 attributesInScope()
RTI 1.3-NG
ABSTRACT

This callback advises a federate that a set of instance-attributes of a
specified object instance is associated with update regions
intersecting the relevant subscription regions of the federate. The
LRC may subsequently deliver reflections of the in-scope instance-
attributes to the federate.

HLA IF SPECIFICATION
This method realizes the “Attributes In Scope” Federation
Management service as specified in the HLA Interface
Specification (§6.13 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

attributesInScope (
RTI::ObjectHandle theObject,
const RTI::AttributeHandleSet& theAttributes

)
throw (

RTI::ObjectNotKnown,
RTI::AttributeNotKnown,
RTI::FederateInternalError

)

ARGUMENTS
theObject

the object instance whose instance attributes are in-scope for
the federate

theAttributes
the instance-attributes which are in-scope for the federate

DESCRIPTION
This callback informs the federate that reflections of the specified
instance-attributes are relevant to the federate based on the update
regions associated with the instance-attributes and the federate’s
current subscription interests. The LRC may subsequently deliver
reflectAttributeValues() callbacks for the in-scope
instance-attributes. An instance-attribute is considered in-scope
for a federate if and only if:

• the federate has discovered the object instance

• the federate is subscribing to the class-attribute corresponding
to the instance-attribute at the level of the discovered class of
the object instance

• the subscription region associated with the class-attribute
intersects the update region associated with the instance-
attribute (if the class-attribute is subscribed with the default
region or the instance-attribute is associated with the default
region for update, this is trivially the case)

• the federate does not own the instance-attribute
If an instance-attribute subsequently goes out of scope due to a
change in subscription or update regions, the federate will receive
an attributesOutOfScope() advisory.
The federate may toggle the generation of attribute-scope
advisories on and off using the
enableAttributeScopeAdvisorySwitch() and
disableAttributeScopeAdvisorySwitch() services,
respectively. The federate will not receive advisories retroactively
for instance-attributes that go into or out-of scope while advisories

are disabled.

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
the attribute scope advisory.

EXCEPTIONS
RTI::ObjectNotKnown

The specified object ID is not valid within the current
FedExecec or is not known to the federate.

RTI::AttributeNotKnown
One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::FederateInternalError
An error internal to the federate has occurred.

SEE ALSO
RTI::FederateAmbassador::

attributesOutOfScope()
discoverObjectInstance()
reflectAttributeValues()

RTI::RTIambassador::
associateRegionForUpdates()
disableAttributeScopeAdvisorySwitch()
enableAttributeScopeAdvisorySwitch()
registerObjectInstance()
registerObjectInstanceWithRegion()
subscribeObjectClassAttributes()
subscribeObjectClassAttributesWithRegion()

Object Management attributesOutOfScope()

HLA-RTI 1.3-Next Generation
B.3-2

B.3.2 attributesOutOfScope()
RTI 1.3-NG
ABSTRACT

This callback advises a federate that a set of instance-attributes of a
specified object instance is no longer in-scope for the federate due
to changes in subscription or in the update regions associated with
the instance-attributes. The LRC will no longer deliver reflections
of the out-of-scope instance-attributes to the federate.

HLA IF SPECIFICATION
This method realizes the “Attributes Out Of Scope” Federation
Management service as specified in the HLA Interface
Specification (§6.14 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual void attributesOutOfScope (
RTI::ObjectHandle theObject,

const RTI::AttributeHandleSet& theAttributes
)

throw (
RTI::ObjectNotKnown,
RTI::AttributeNotKnown,
RTI::FederateInternalError

)

ARGUMENTS
theObject

the object instance whose instance attributes are out-of-scope
for the federate

theAttributes
the instance-attributes which are out-of-scope for the federate

DESCRIPTION
This callback informs the federate that the specified instance-
attributes (which have previously been the subject of an
attributesInScope() advisory) are no longer in scope. This
can occur if the relevant subscription or update regions are
changed such that they no longer intersect. The LRC will not
deliver any reflections of the out-of-scope instance-attributes
without an intervening attributesInScope() advisory.
The federate may toggle the generation of attribute-scope
advisories on and off using the
enableAttributeScopeAdvisorySwitch() and
disableAttributeScopeAdvisorySwitch() services,
respectively. The federate will not receive advisories retroactively
for instance-attributes that go into or out-of scope while advisories
are disabled.

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
the attribute-scope advisory.

EXCEPTIONS
RTI::ObjectNotKnown

The specified object ID is not valid within the current
FedExecec or is not known to the federate.

RTI::AttributeNotKnown
One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::FederateInternalError
An error internal to the federate has occurred.

SEE ALSO
RTI::FederateAmbassador::

attributesInScope()
RTI::RTIambassador::

disableAttributeScopeAdvisorySwitch()
enableAttributeScopeAdvisorySwitch()

Object Management discoverObjectInstance()

HLA-RTI 1.3-Next Generation
B.3-3

B.3.3 discoverObjectInstance()
RTI 1.3-NG
ABSTRACT

This callback informs a federate of the existence of an object
instance in the federation that is relevant to the federate’s current
subscription interests.

HLA IF SPECIFICATION
This service realizes the “Discover Object Instance” Federation
Management service as specified in the HLA Interface
Specification (§6.3 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

discoverObjectInstance (
RTI::ObjectHandle theObject,
const char* RTI::ObjectClassHandle theObjectClass
const char* theObjectName

)
throw (

RTI::CouldNotDiscover,
RTI::ObjectClassNotKnown,
RTI::FederateInternalError

)

ARGUMENTS
theObject

a numeric handle which may be used by the discovering
federate to uniquely refer to the object instance

theObjectClass
the object class level at which the object instance is
discovered

theObjectName
 a symbolic name associated with the discovered object

DESCRIPTION
This callback informs a federate of the existence of an object
instance in the federation that is relevant to the federate’s current
subscription interest. This discovery may occur as a result of any
of the following:

• a registerObjectInstance() or
registerObjectInstanceWithRegion() service
invocation by a remote federate

• a modification of the associated update regions for instance-
attributes of an object instance which causes the object
instance to become relevant to the local federate

• a state update for instance-attributes of an object instance
relevant to the local federate, but for which the local federate
has not already received a discovery (e.g., if the local federate
was not subscribed at the time of object registration)

The object class by which the object instance is discovered will be
the registered object class of the instance or the most-specific
superclass of the registered object class such that

• the discovering federate is currently subscribing to the object
class

• the discovering federate is subscribing to at least one class-
attribute at the level of the object class such that the
corresponding instance-attribute of the object instance is
currently owned in the federation and the region of
subscription intersects the update region associated with the

corresponding instance-attribute
Only a federate’s subscriptions at the level of the discovered object
class are considered in assessing the relevance of future updates
instance-attributes of the discovered object instance.
Ramifications of this include

• if subscriptions or update regions related to the object
instance subsequently change such that the object instance’s
region of relevance intersects the federate’s subscription
interests at a more-specific object class, the instance will not
be rediscovered as the more-specific object class, nor will
updates of instance-attributes exclusive to the more-specific
object class be presented to the federate

• an instance-attribute is not considered relevant if a federate’s
subscription to the class-attribute at the level of the discovered
class does not intersect the instance-attribute’s update region,
even if the federate is subscribing to the class-attribute at
some other level with a subscription region intersecting the
update region

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
the existence of the object instance in the federation.
An exceptional will result in an entry being made to the federate's
log file; the object instance is still considered to have been
discovered by the federate.

EXCEPTIONS
RTI::CouldNotDiscover

The federate was unable to discover the object for reasons
other than an invalid object class or an error internal to the
federate.

RTI::ObjectClassNotKnown
The object class handle is not valid in the context of the
federation or is not currently subscribed by the federate.

RTI::FederateInternalError
An error internal to the federate has occurred.

SEE ALSO
RTI::FederateAmbassador::

attributesInScope()
reflectAttributeValues()
removeObjectInstance()

RTI::RTIambassador::
getObjectClassName()
getObjectInstanceName()
localDeleteObjectInstance()
registerObjectInstance()
registerObjectInstanceWithRegion()
requestObjectAttributeValueUpdate()
subscribeObjectClassAttributes()
subscribeObjectClassAttributesWithRegion()

Object Management provideAttributeValueUpdate()

HLA-RTI 1.3-Next Generation
B.3-4

B.3.4 provideAttributeValueUpdate()
RTI 1.3-NG
ABSTRACT

This callback informs the federate that an update of a set of locally
owned instance-attributes of a specified object instance has been
solicited.

HLA IF SPECIFICATION
This method realizes the “Provide Attribute Value Update” Object
Management service as specified in the HLA Interface
Specification (§6.16 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

provideAttributeValueUpdate (
RTI::ObjectHandle theObject,

const RTI::AttributeHandleSet& theAttributes
)

throw (
RTI::ObjectNotKnown,
RTI::AttributeNotKnown,
RTI::AttributeNotOwned,
RTI::FederateInternalError

)

ARGUMENTS
theObject

Object ID of the object for whom an attribute-value update is
requested.

theAttributes
Set of attributes for which an update is requested; these must
be attributes whose ownership tokens are held by the federate.
The caller maintains ownership of the storage associated with
this set; the federate ambassador should make a copy if it
wishes to retain this information after the completion of the
call.

DESCRIPTION
This callback is invoked to notify the federate that an attribute-
update has been requested by another federate via its
RTIambassador::requestClassAttributeValueUpdate or
RTIambassador::requestObjectAttributeValueUpdate service.
(Note that one attribute-value request can trigger multiple provide
attribute-value update callbacks on different federates.)
Upon receipt of such a request, the federate should update the
specified object-attributes (using
RTIambassador::updateAttributeValues) as soon as possible.
(Keep in mind that this may not be done from inside the
FederateAmbassador::provideAttributeValueUpdate callback as
this would result in a concurrent access violation.)

RETURN VALUES

A non-exceptional return indicates that the federate understands
the attribute value update request and intends to update the
specified object-attributes.
An exceptional return will cause an entry to be made in the
federate's RTI log file; the federate is still responsible for updating
the requested attributes.

EXCEPTIONS

RTI::ObjectNotKnown
The specified object ID is not valid within the current
FedExecec or is not known to the federate.

RTI::AttributeNotKnown
One or more of the attribute handles is not valid in the context
of the specified object or the federate does not hold the
attribute's ownership token.

RTI::AttributeNotOwned
One or more of the specified attribute-instances is not owned
by the local federate.

RTI::FederateInternalError
An error internal to the federate has occurred.

SEE ALSO
RTI::RTIambassador::

requestObjectAttributeValueUpdate()
updateAttributeValues()

Object Management receiveInteraction()

HLA-RTI 1.3-Next Generation
B.3-5

B.3.5 receiveInteraction()
RTI 1.3-NG
ABSTRACT

This callback informs a federate of an interaction in the federation
that is relevant to the federate’s current subscription interests.

HLA IF SPECIFICATION
This method realizes the “Receive Interaction” Object
Management service as specified in the HLA Interface
Specification (§6.7 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

receiveInteraction (
RTI::InteractionClassHandle theInteraction,
const RTI::ParameterHandleValuePairSet&

theParameters,
const RTI::FedTime& theTime,
const char *theTag,
RTI::EventRetractionHandle theHandle

)
throw (

RTI::InteractionClassNotKnown,
RTI::InteractionParameterNotKnown,
RTI::InvalidFederationTime,
RTI::FederateInternalError

)

virtual
void
RTI::FederateAmbassador::

receiveInteraction (
RTI::InteractionClassHandle theInteraction,
const RTI::ParameterHandleValuePairSet&

theParameters,
const char *theTag

)
throw (

RTI::InteractionClassNotKnown,
RTI::InteractionParameterNotKnown
RTI::FederateInternalError

)

ARGUMENTS
theInteraction

the interaction class of the interaction instance
theParameters

the set of parameters associated with the interaction instance
theTime

the logical time used for time-stamp-ordered (TSO) delivery
of the interaction

theTag
the user-specified tag passed to the invocation of
sendInteraction() resulting in the receipt

theHandle
the event handle that uniquely identifies the TSO event for
purposes of retraction

DESCRIPTION
The callback is invoked to notify the federate of an interaction in
the federation relevant to the current subscription interests of the
federate. Interactions may be produced by the RTI itself, or they
may be produced by federates using the sendInteraction() or
sendInteractionWithRegion() service.
An interaction will be delivered to a federate as the actual class of
the interaction or the most-specific superclass of the actual class of

the interaction such that the federate’s subscription region
intersects the region associated with the interaction instance.
An interaction instance will be delivered as time-stamp-ordered
(TSO) if any only if

• The federate initiating the interaction is time regulating at the
time the interaction is sent.

• A logical time argument is provided to the
sendInteraction() service invocation resulting in the
interaction.

• At the initiating federate, the interaction class is associated
with a TSO ordering service in the FED file or through a
subsequent changeInteractionOrderType() service
invocation.

• The receiving federate is time-constrained at the point at
which the interaction is received and the point at which the
interaction is delivered.

A logical time argument will be provided to
receiveInteraction() if only if the interaction instance is
delivered in time-stamp-order (even if a logical time was provided
to the sendInteraction() invocation initiating the interaction.)

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
the receipt of the interaction.
An exceptional return will cause an entry to be made in the
federate's RTI log file; the interaction is still considered to have
been delivered to the federate.

EXCEPTIONS
RTI::InteractionClassNotKnown

The specified interaction class handle is not valid in the
context of the current Federation Execution or is not
subscribed by the federate.

RTI::InteractionParameterNotKnown
One or more of the specified parameters handles is not valid
in the context of the specified interaction class.

RTI::InvalidFederationTime
The federation time is not valid, i.e. a time-stamped-ordered
interaction has been delivered to a time-constrained federation
in the federate's past. (In 1.0 there's no way for the federate to
tell whether the receipt is the result of a time-stamp-ordered
interaction, so it's unclear when this exception should be
raised.)

RTI::FederateInternalError
An error internal to the federate has occurred.

SEE ALSO
RTI::FederateAmbassador::
 requestRetraction()
 reflectAttributeValues()
RTI::ParameterHandleValuePairSet
RTI::RTIambassador::
 sendInteraction()
 sendInteractionWithRegion()
 subscribeInteractionClass()
 subscribeInteractionClassWithRegion()
 tick()

Object Management reflectAttributeValues()

HLA-RTI 1.3-Next Generation
B.3-6

B.3.6 reflectAttributeValues()
RTI 1.3-NG
ABSTRACT

This callback informs the federate of a state update for a set of
instance-attributes relevant to the federate’s current subscription
interests.

HLA IF SPECIFICATION
This method realizes the “Reflect Attribute Values” Object
Management service as specified in the HLA Interface
Specification (§6.5 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

reflectAttributeValues (
RTI::ObjectHandle theObject,
const RTI::AttributeHandleValuePairSet&

theAttributes,
const RTI::FedTime& theTime,
const char *theTag,
RTI::EventRetractionHandle theHandle

)
throw (

RTI::ObjectNotKnown,
RTI::AttributeNotKnown,
RTI::FederateOwnsAttributes,
RTI::InvalidFederationTime,
RTI::FederateInternalError

)

virtual
void
reflectAttributeValues (

RTI::ObjectHandle theObject,
const RTI::AttributeHandleValuePairSet&

theAttributes,
const char *theTag

)
throw (

RTI::ObjectNotKnown
RTI::AttributeNotKnown,
RTI::FederateOwnsAttributes,
RTI::FederateInternalError

)

ARGUMENTS
theObject

object instance for whose is being updated
theAttributes

the instance-attributes whose state is being updated
theTime

the time stamp used for time-stamp-ordered delivery of the
reflection

theTag
the user-specified tag that was passed to the invocation of
updateAttributeValues() resulting in the reflection

theHandle
the handle uniquely identifying the time-stamp-ordered event
for purposes of retraction

DESCRIPTION
This callback is invoked to communicate a change in state of some
set of instance-attributes relevant to the federate’s subscription
interest. Attributes are used to represent persistent characteristics
of federation state (e.g. the position of an entity.) Such a reflection
is usually the result of an invocation of the
updateAttributeValues() service by a remote federate. A

single invocation of updateAttributeValues() may result in
multiple reflections: one for each region/transport/order
combination for the instance-attribute subjects of the update.
The object instance subject of a reflection must have previously
been the subject of a discoverObjectInstance() callback.
The instance-attribute subjects of a reflection must have previously
been the subject of an attributesInScope() callback.
An instance-attribute that has been updated will only be reflected
to a given federate if

• the federate is subscribing to the corresponding class-attribute
at the level of the object class by which the object-instance
has been discovered by the federate

• the subscription region of the aforementioned class-attribute
intersects the update region associated with the instance-
attribute

• the update was initiated by a different federate or by the RTI
itself

A reflection will be delivered as time-stamp-ordered (TSO) to a
federate if any only if:

• The federate initiating the update is time regulating at the time
the update is sent.

• A logical time argument is provided to the
updateAttributeValues() service invocation resulting in
the interaction.

• At the initiating federate, the instance-attribute is associated
with a TSO ordering service in the FED file or through a
subsequent changeAttributeOrderType() service
invocation.

• The receiving federate is time-constrained at the point at
which the update is received and the point at which the update
is delivered.

A logical time argument will be provided to
reflectAttributeValues() only if the reflection is delivered
in time-stamp-order (even if a logical time was provided to the
updateAttributeValues() invocation resulting in the
reflection.)

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
the update of the instance-attributes.
An exceptional return will cause an error message to be written to
the federate's RTI log file; the attribute values are still considered
to have been reflected.

EXCEPTIONS
RTI::ObjectNotKnown

The object ID is has not previously been discovered by the
federate.

RTI::AttributeNotKnown
One or more attribute handles are not valid in the context of
the current Federation Execution or the attributes are not
subscribed by the federate.

RTI::FederateOwnsAttributes
One or more attributes of the specified object are owned by
the local federate.

RTI::InvalidFederationTime
The federation time is not valid, i.e. a time-stamped-ordered
update has been delivered to a time-constrained federation in
the federate's past. (In 1.0 there's no way for the federate to

Object Management reflectAttributeValues()

HLA-RTI 1.3-Next Generation
B.3-7

tell whether the reflection is the result of a time-stamp-
ordered update, so it's unclear when this exception should be
raised.)

RTI::FederateInternalError
An error internal to the federate has occurred.

SEE ALSO
RTI::AttributeHandleValuePairSet
RTI::FederateAmbassador::

discoverObject()
reflectRetraction()
receiveInteraction()

RTI::RTIambassador::
updateAttributeValues()
enableTimeConstrained()
subscribeObjectClass()
timeAdvanceRequest()

Object Management removeObjectInstance()

HLA-RTI 1.3-Next Generation
B.3-8

B.3.7 removeObjectInstance()
RTI 1.3-NG
ABSTRACT

This callback informs a federate that an object instance no longer
exists in the federation.

HLA IF SPECIFICATION
This method realizes the “Remove Object Instance” Federation
Management service as specified in the HLA Interface
Specification (§6.9 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

removeObjectInstance (
RTI::ObjectHandle theObject,
const RTI::FedTime& theTime,
const char *theTag,
RTI::EventRetractionHandle theHandle

)
throw (

RTI::ObjectNotKnown,
RTI::InvalidFederationTime,
RTI::FederateInternalError

)

virtual
void
RTI::FederateAmbassador::

removeObjectInstance (
RTI::ObjectHandle theObject,
const char *theTag

)
throw (

RTI::ObjectNotKnown,
RTI::FederateInternalError

)

ARGUMENTS
theObject

the object instance being removed
theTime

the time-stamp associated with a time-stamp-ordered object
removal

theTag
the user-specified tag provided to the invocation of
deleteObjectInstance() initiating the removal, or
“Deleted by Resignation” if the instance was implicitly
deleted due to resignation

theHandle
the event handle associated with a time-stamp-ordered
deletion

DESCRIPTION
This callback informs the federate that the specified object instance
has been deleted from the federation. This deletion may be the
result of a deleteObjectInstance() service invocation by a
remote federation, or of a resignation by a remote federate with a
“delete objects” policy.

A removeObjectInstance() callback resulting from a
deleteObjectInstance() service invocation will be delivered
time-stamp-ordered (TSO) if and only if

• a logical time argument is provided to the
deleteObjectInstance() service invocation

• a TSO delivery policy is in effect for the privilegeToDelete
attribute of the specified object instance at the initiating
federate

• the federate initiating the deletion is time regulating

• the federate receiving the deletion is time constrained at the
point in execution at which the deletion is queued for delivery
and the point in execution at which the deletion is delivered to
the federate

No logical time argument will be provided to
removeObjectInstance() callbacks that are not delivered in
TSO order, even if a logical time was specified to the
deleteObjectInstance() service invocation which initiated the
deletion.
The removed object instance may be subsequently rediscovered if
there are updates for the object-instance queued or in-transit at the
time of the deletion.

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
the deletion of the specified object instance.
An exceptional return will cause an entry to be made in the
federate’s log file; the object instance is still considered deleted
with respect to the federate.

EXCEPTIONS
RTI::ObjectNotKnown

The specified object ID is not valid within the current
FedExecec or is not known to the federate.

RTI::InvalidFederationTime
The specified logical time argument does not represent a valid
point on the federation time axis.

RTI::FederateInternalError
An error internal to the federate has occurred.

SEE ALSO
RTI::FederateAmbassador::

discoverObjectInstance()
RTI::RTIambassador::

deleteObjectInstance()
enableTimeConstrained()
localDeleteObjectInstance()
resignFederationExecution()
tick()

Object Management turnUpdatesOffForObjectInstance()

HLA-RTI 1.3-Next Generation
B.3-9

B.3.8 turnUpdatesOffForObjectInstance()
RTI 1.3-NG
ABSTRACT

This service advises a federate that there are no active subscribers
for a set of instance-attributes of a specified object instance.

HLA IF SPECIFICATION
This method realizes the “Turn Updates Off For Object Instance”
Federation Management service as specified in the HLA Interface
Specification (§6.18 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

turnUpdatesOffForObjectInstance (
RTI::ObjectHandle theObject,

const RTI::AttributeHandleSet& theAttributes
)

throw (
RTI::ObjectNotKnown,
RTI::AttributeNotOwned,
RTI::FederateInternalError

)

ARGUMENTS
theObject

the object instance to which the specified instance-attributes
belong

theAttributes
the set of instance-attributes for which the federate is advised
to cease updates

DESCRIPTION
This callback advises the federate that the specified instance-
attributes (which have been the previous subject of
turnUpdatesOnForObjectInstance() callbacks) are no longer
actively subscribed by a remote federate. This advisory may be the
result of a change in subscription by a remote federate, or a change
in the update regions associated with the instance-attributes at the
local federate.
The federate may safely cease updating the specified instance-
attributes, as any subsequent updates would be superfluous in the
absence of an active subscriber. The federate will be subsequently
notified using turnUpdatesOnForObjectInstance() if an
active subscriber reemerges for the instance-attributes.
The federate may toggle attribute-update advisories on and off
using the enableAttributeRelevanceAdvisorySwitch() or
disableAttributeRelevanceAdvisorySwitch() service,
respectively. The federate will not be retroactively notified of
changes in instance-attribute update relevance that occur while
attribute-update advising is disabled.

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
the attribute-update advisory.

EXCEPTIONS
RTI::ObjectNotKnown

The specified object ID is not valid within the current
FedExecec or is not known to the federate.

RTI::AttributeNotOwned
One or more of the specified attribute-instances is not owned
by the local federate.

RTI::FederateInternalError
An error internal to the federate has occurred.

SEE ALSO
RTI::FederateAmbassador::

attributesOutOfScope()
turnUpdatesOnForObjectInstance()

RTI::RTIambassador::
associateRegionForUpdates()
unassociateRegionForUpdates()
unsubscribeObjectClass ()
unsubscribeObjectClassAttributes()

Object Management turnUpdatesOnForObjectInstance()

HLA-RTI 1.3-Next Generation
B.3-10

B.3.9 turnUpdatesOnForObjectInstance()
RTI 1.3-NG
ABSTRACT

This service advises a federate that there are active subscribers for
a set of instance-attributes of a specified object instance.

HLA IF SPECIFICATION
This method realizes the “Turn Updates On For Object Instance”
Federation Management service as specified in the HLA Interface
Specification (§6.17 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

turnUpdatesOnForObjectInstance (
RTI::ObjectHandle theObject,

const RTI::AttributeHandleSet& theAttributes
)

throw (
RTI::ObjectNotKnown,
RTI::AttributeNotOwned,
RTI::FederateInternalError

)

ARGUMENTS
theObject

the object instance for which updates are advised
theAttributes

the instance-attributes for which updates are advised

DESCRIPTION
This service advises a federate that there are active subscribers for
the specified set of instance-attributes. An instance-attribute is
considered relevant to a remote federate if and only if:

• the federate is subscribing the corresponding class-attribute at
the level of the discovered object class of the instance

• the region of subscription of the above class-attribute
intersects the update region associated with the instance-
attribute (if the region of subscription or update region is the
default region, this is trivially the case)

If remote subscriptions change such that there are no longer any
active subscribers for some or all instance-attributes that have been
the subject of a turnUpdatesOnForObjectInstance()
callback, the federate will receive a
turnUpdatesOffForObjectInstance() callback advising it
that it may cease updating the instance-attributes.
The federate may toggle attribute-update advisories on and off
using the enableAttributeRelevanceAdvisorySwitch() or
disableAttributeRelevanceAdvisorySwitch() service,
respectively. The federate will not be retroactively notified of
changes in instance-attribute update relevance that occur while
attribute-update advising is disabled.

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
the attribute-update advisory.

EXCEPTIONS
RTI::ObjectNotKnown

The specified object ID is not valid within the current
FedExecec or is not known to the federate.

RTI::AttributeNotOwned
One or more of the specified attribute-instances is not owned
by the local federate.

RTI::FederateInternalError
An error internal to the federate has occurred.

SEE ALSO
RTI::FederateAmbassador::

attributesInScope()
turnUpdatesOffForObjectInstance()

RTI::RTIambassador::
associateRegionForUpdates()
registerObjectInstance()
registerObjectInstanceWithRegion()
subscribeObjectClassAttributes()
subscribeObjectClassAttributesWithRegion()
unassociateRegionForUpdates()
updateAttributeValues()

B.4 Ownership Management

Ownership Management attributeIsNotOwned()

HLA-RTI 1.3-Next Generation
B.4-1

B.4.1 attributeIsNotOwned()
RTI 1.3-NG
ABSTRACT

This service informs a federate that an instance-attribute that was
previously the subject of a queryAttributeOwnership()
service invocation exists in the federation but is not currently
owned by any federate.

HLA IF SPECIFICATION
This method (in conjunction with
informAttributeOwnership() and
attributeOwnedByRTI()) realizes the “Inform Attribute
Ownership” Ownership Management service as specified in the
HLA Interface Specification (§7.16 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

attributeIsNotOwned (
RTI::ObjectHandle theObject,
RTI::AttributeHandle theAttribute

)
throw (

RTI::ObjectNotKnown,
RTI::AttributeNotKnown,
RTI::FederateInternalError

)

ARGUMENTS
theObject

the object-instance whose instance-attribute is unowned
theAttribute

the instance-attribute that is unowned

DESCRIPTION
This service informs the federate that an instance-attribute is not
currently owned by any federate, and that the ownership “token”
associated with the instance-attribute is being managed by some
LRC in the federation. This advisory is provided in response to a
queryAttributeOwnership() service invocation by the
federate. If the local LRC of the querying federate is managing the
ownership token, this callback will occur synchronously with
respect to the queryAttributeOwnership() invocation.
Otherwise, this callback will occur during a subsequent invocation
of tick() by the querying federate (i.e., the ownership query is
sent to the federation and a response returned asynchronously).

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
the ownership advisory.

EXCEPTIONS
RTI::ObjectNotKnown

The object ID specified does not correspond to an object that
has been discovered by the federate.

RTI::AttributeNotKnown
One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::FederateInternalError
An error internal to the federate has occurred.

SEE ALSO
RTI::FederateAmbassador::

attributeOwnedByRTI()
informAttributeOwnership()

RTI::RTIambassador::
getAttributeName()
queryAttributeOwnership()

Ownership Management attributeOwnedByRTI()

HLA-RTI 1.3-Next Generation
B.4-2

B.4.2 attributeOwnedByRTI()
RTI 1.3-NG
ABSTRACT

This service informs a federate that an instance-attribute that was
previously the subject of a queryAttributeOwnership()
service invocation is currently owned internally by the RTI.

HLA IF SPECIFICATION
This method (in conjunction with
informAttributeOwnership() and
attributeIsNotOwned()) realizes the “Inform Attribute
Ownership” Ownership Management service as specified in the
HLA Interface Specification (§7.16 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

attributeOwnedByRTI (
RTI::ObjectHandle theObject,
RTI::AttributeHandle theAttribute

)
throw (

RTI::ObjectNotKnown,
RTI::AttributeNotKnown,
RTI::FederateInternalError

)

ARGUMENTS
theObject

the object-instance whose instance-attribute is unowned
theAttribute

the instance-attribute that is unowned

DESCRIPTION
This service informs the federate that an instance-attribute is
currently owned and updated by the RTI itself. Typically, the
instance-attribute in question is an attribute of a MOM or internal
RTI object class. This advisory is provided in response to a
queryAttributeOwnership() service invocation by the
federate. If the local LRC of the querying federate is the owner of
the instance-attribute (e.g., if it is an attribute of the
Manager.Federate object class updated by the LRC on behalf of
the federate), this callback will occur synchronously with respect
to the queryAttributeOwnership() invocation. Otherwise,
this callback will occur during a subsequent invocation of tick()
by the querying federate (i.e., the ownership query is sent to the
federation and a response returned asynchronously).

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
the ownership advisory.

EXCEPTIONS
RTI::ObjectNotKnown

The object ID specified does not correspond to an object that
has been discovered by the federate.

RTI::AttributeNotKnown
One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::FederateInternalError
An error internal to the federate has occurred.

SEE ALSO
RTI::FederateAmbassador::

attributeIsNotOwned()
informAttributeOwnership()

RTI::RTIambassador::
queryAttributeOwnership()
getAttributeName()

Ownership Management attributeOwnershipAcquisitionNotification()

HLA-RTI 1.3-Next Generation
B.4-3

B.4.3 attributeOwnershipAcquisitionNotification()
RTI 1.3-NG
ABSTRACT

This service informs a federate that the ownership of a set of
instance-attributes of an object instance has been acquired. The
federate should immediately begin updating the instance-attributes
as appropriate.

HLA IF SPECIFICATION
This method realizes the “Attribute Ownership Acquisition
Notification” Ownership Management service as specified in the
HLA Interface Specification (§7.6 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

attributeOwnershipAcquisitionNotification (
RTI::ObjectHandle theObject,

const RTI::AttributeHandleSet& securedAttributes)
throw (

RTI::ObjectNotKnown,
RTI::AttributeNotKnown,
RTI::AttributeAcquisitionWasNotRequested,
RTI::AttributeAlreadyOwned,
RTI::AttributeNotPublished,
RTI::FederateInternalError

)

ARGUMENTS
theObject

the object-instance whose instance-attributes have been
acquired by the federate

securedAttributes
the set of instance-attributes that have been acquired by the
federate

DESCRIPTION
This callback informs the federate that it has acquired ownership of
a specified set of instance-attributes of a specified object instance.
Each instance-attribute subject of such a callback should be

• not currently owned by the local federate

• the subject of an outstanding acquisition request by the local
federate, either initiated by the local federate or in response to
an ownership assumption request

• existent in the federation

• not owned by any federate, or the subject of an outstanding
negotiated divestiture request by a remote federate, either
initiated by the remote federate or in response to an ownership
release request

The instance-attributes may be a subset of the instance-attributes
for which the federate has outstanding acquisition requests for the
specified object. The federate may receive multiple
attributeOwnershipAcquisitionNotification() callbacks
in response to a single acquisition request, as different remote
federates may own different subsets of the specified instance-
attributes.
This callback may occur synchronously with respect to the service
invocation requesting the acquisition if one or more instance-
attributes are unowned and tracked by the LRC of the acquiring
federate. For any other instance-attributes, an acquisition request
will be sent out to the federation and
attributeOwnershipAcquisitionNotification() callbacks

may be delivered asynchronously, during a subsequent invocation
of the tick() service.

RETURN VALUES
A non-exceptional return indicates that the federate assumes
ownership of the specified instance-attributes.
An exceptional return will still result in an entry being made to the
federate’s log file. The federate still assumes ownership of the
instance-attributes.

NOTES
• Ownership acquisition may be the result of an

attributeOwnershipAcquisition() or
attributeOwnershipAcquisitionIfAvailable() service
invocation by the local federate.

EXCEPTIONS
RTI::ObjectNotKnown

The federate has not discovered an object with the specified
object ID.

RTI::AttributeNotKnown
One or more of the attribute handles are not valid within the
context of the specified object, are already owned by the
federate, or are not published or not subscribed by the
federate.

RTI::AttributeAcquisitionWasNotRequested
One or more of the instances-attributes is not the subject of a
currently outstanding
attributeOwnershipAcquisition() request.

RTI::AttributeAlreadyOwned
One or more of the instance-attributes is already owned by the
local federate.

RTI::AttributeNotPublished
One or more of the specified attributes are not currently
published by the local federate.

RTI::FederateInternalError
An error internal to the federate has occurred.

SEE ALSO
RTI::AttributeHandleSet
RTI::FederateAmbassador::
 confirmAttributeOwnershipAcquisitionCancellation()
 requestAttributeOwnershipAssumption()
 requestAttributeOwnershipRelease()
RTI::RTIambassador::
 attributeOwnershipAcquisition()
 attributeOwnershipAcquisitionIfAvailable()
 attributeOwnershipReleaseResponse()

cancelAttributeOwnershipAcquisition()

Ownership Management attributeOwnershipDivestitureNotification()

HLA-RTI 1.3-Next Generation
B.4-4

B.4.4 attributeOwnershipDivestitureNotification()
RTI 1.3-NG
ABSTRACT

This service informs a federate that it has been relieved of
ownership responsibilities for a specified set of instance-attributes.

HLA IF SPECIFICATION
This method realizes the “Attribute Ownership Divestiture
Notification” Ownership Management service as specified in the
HLA Interface Specification (§7.5 and 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

attributeOwnershipDivestitureNotification (
RTI::ObjectHandle theObject,

const RTI::AttributeHandleSet& releasedAttributes
)

throw (
RTI::ObjectNotKnown,
RTI::AttributeNotKnown,
RTI::AttributeNotOwned,
RTI::AttributeDivestitureWasNotRequested,
RTI::FederateInternalError

)

ARGUMENTS
theObject

the object-instance whose instance-attributes have been
divested by the federate

releasedAttributes
the set of instance-attributes that have been divested by the
federate

DESCRIPTION
This callback informs the federate that it has divested ownership of
a specified set of instance-attributes of a specified object instance.
Each instance-attribute subject of such a callback should be

• currently owned by the local federate

• the subject of an outstanding divestiture request by the local
federate, either initiated by the local federate or in response to
an ownership release request

• in the case of negotiated divestitures, the subject of an
outstanding acquisition request by a remote federate, either
initiated by the remote federate or in response to an ownership
acquisition request

The instance-attributes may be a subset of the instance-attributes of
the specified object for which the federate has outstanding
divestiture requests. The federate may receive multiple
attributeOwnershipDivestitureNotification() callbacks
in response to a single divestiture request, as different remote
federates may assume ownership of different subsets of the
divested instance-attributes.
This callback may occur synchronously with respect to the service
invocation requesting the divestiture if a negotiated divestiture is
requested and there exists an outstanding ownership assumption
request at the time of the divestiture. For any other instance-
attributes, a divestiture request will be sent out to the federation
and attributeOwnershipDivestitureNotification()
callbacks may be delivered asynchronously, during a subsequent
invocation of the tick() service.

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
the transfer of the specified instance-attributes to a remote federate.
An exceptional return will result in an entry being made into the
federate’s log file; the ownership of the specified instance-
attributes will still be transferred.

RTI 1.3 NOTES
• For unconditional divestiture requests, no

attributeOwnershipDivestitureNotification() will be
made. A non-exceptional return from
unconditionalAttributeOwnershipDivestiture() implies
that the instance-attributes have been successfully divested.

• This callback will only be made because of
negotiatedAttributeOwnershipDivestiture() service
invocations; the
unconditionalAttributeOwnershipDivestiture() and
attributeOwnershipReleaseResponse() services may also
be used to divest ownership, but do not result in callbacks.

EXCEPTIONS
RTI::ObjectNotKnown

The federate has not discovered an object with the specified
object ID.

RTI::AttributeNotKnown
One or more of the attributes are not valid in the context of
the specified object or have not been the subject of a
divestiture request.

RTI::AttributeNotOwned
One or more of the specified attribute-instances is not owned
by the local federate.

RTI::AttributeDivestitureWasNotRequested
One or more of the instance-attributes is not the subject of a
currently outstanding
negotiatedAttributeOwnershipDivestiture()
request.

RTI::FederateInternalError
An error internal to the federate has occurred.

SEE ALSO
RTI::AttributeHandleSet
RTI::FederateAmbassador::
 requestAttributeOwnershipRelease()
RTI::RTIambassdaor::

attributeOwnershipReleaseResponse()
negotiatedAttributeOwnershipDivestiture()
requestAttributeOwnershipRelease()
unconditionalAttributeOwnershipDivestiture()

Ownership Management attributeOwnershipUnavailable()

HLA-RTI 1.3-Next Generation
B.4-5

B.4.5 attributeOwnershipUnavailable()
RTI 1.3-NG
ABSTRACT

This service informs a federate that a set of instance-attributes of
an object instance that the federate attempted to acquire are
currently owned by remote federates or by the RTI itself.

HLA IF SPECIFICATION
This service realizes the “Attribute Ownership Unavailable”
Ownership Management service as specified in the HLA Interface
Specification (§7.9 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

attributeOwnershipUnavailable (
RTI::ObjectHandle theObject,

const RTI::AttributeHandleSet& theAttributes
)

throw (
RTI::ObjectNotKnown
RTI::AttributeNotKnown,
RTI::AttributeNotDefined,
RTI::AttributeAlreadyOwned,
RTI::AttributeAcquisitionWasNotRequested,
RTI::FederateInternalError

)

ARGUMENTS
theObject

the object instance whose instance-attributes are currently
owned

theAttributes
the instance-attributes that are currently owned

DESCRIPTION
This callback informs a federate that some or all instance-attributes
of the specified object instance that are currently the subject of
outstanding
attributeOwnershipAcquisitionIfAvailable() requests
are already owned by a remote federate or by the RTI itself. If an
instance-attribute is owned by the RTI and updated by the
acquiring federate’s LRC (e.g., an attribute of the
Manager.Federate object class updated on behalf of the federate),
such a callback will be made synchronously with respect to the
attributeOwnershipAcquisitionIfAvailable() service
invocation. For all other instance-attributes, an acquisition request
will be sent out to the federation and
attributeOwnershipUnavailable() callbacks may be
delivered asynchronously, during subsequent invocations of
tick(). A single acquisition request may result in multiple
attributeOwnershipUnavailable() callbacks, as different
subsets of the requested attributes may be owned by different
remote federates and LRCs.
Note that a federate will not receive
attributeOwnershipUnavailable() callbacks for instance-
attributes that are no longer in existence in the federation.
Upon receipt of such a callback, a federate may wish to use
attributeOwnershipAcquisition() to solicit ownership of
the attribute from the remote federate.

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
the ownership advisory.

EXCEPTIONS
RTI::ObjectNotKnown

The federate has not discovered an object with the specified
object ID.

RTI::AttributeNotKnown
One or more of the attribute handles are not valid within the
context of the specified object, are already owned by the
federate, or are not published or not subscribed by the
federate.

RTI::AttributeNotDefined
The attribute handle is not valid in the context of the current
FedExecec.

RTI::AttributeAlreadyOwned
One or more of the instance-attributes is already owned by the
local federate.

RTI::AttributeAcquisitionWasNotRequested
One or more of the instances-attributes is not the subject of a
currently outstanding
attributeOwnershipAcquisition() request.

RTI::FederateInternalError
An error internal to the federate has occurred.

SEE ALSO
RTI::AttributeHandleSet
RTI::FederateAmbassador::

attributeOwnershipAcquisitionNotification()
RTI::RTIambassador::

attributeOwnershipAcquisitionIfAvailable()
getAttributeName()

Ownership Management confirmAttributeOwnershipAcquisitionCancellation()

HLA-RTI 1.3-Next Generation
B.4-6

B.4.6 confirmAttributeOwnershipAcquisitionCancellation()
RTI 1.3-NG
ABSTRACT

This service informs a federate that an outstanding request to
cancel acquisition of a specified set of instance-attributes of a
specified object instance has been achieved.

HLA IF SPECIFICATION
This method realizes the “Confirm Attribute Ownership
Acquisition Cancellation” Ownership Management service as
specified in the HLA Interface Specification (§7.14 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

confirmAttributeOwnershipAcquisitionCancellation (
RTI::ObjectHandle theObject,

const RTI::AttributeHandleSet& theAttributes
)

throw (
RTI::ObjectNotKnown,
RTI::AttributeNotKnown,
RTI::AttributeNotDefined,
RTI::AttributeAlreadyOwned,
RTI::AttributeAcquisitionWasNotCanceled,
RTI::FederateInternalError

)

ARGUMENTS
theObject

the object-instance for which instance-attribute acquisition
has been cancelled

theAttributes
the instance-attributes for which acquisition has been
cancelled

DESCRIPTION
This callback informs the federate that a cancellation of ownership
acquisition, as requested using the
cancelAttributeOwnershipAcquisition() service, has
succeeded. The federate will not receive
attributeOwnershipAcquisition() callbacks for any of the
specified instance-attributes because of the cancelled acquisition
request.
An acquisition cancellation must be coordinated with the
federation to guard against the race condition that would occur if
an acquisition were cancelled while an ownership transfer response
was in-transit. As such,
confirmAttributeOwnershipAcquisitionCancellation()
callbacks will always be delivered asynchronously to
cancelAttributeOwnershipAcquisition() requests, during
subsequent invocations of the tick() service.
Multiple
confirmAttributeOwnershipAcquisitionCancellation()
cancellations may be received for a single cancellation request, as
different subsets of the cancelled attributes may be confirmed by
different remote federates.
A federate will not receive a cancellation confirmation for

• instance-attributes that do not exist in the federation (no
callback will be received)

• instance-attributes for which an ownership transfer was
already in-transit from a remote federate when it received the
cancellation request (an

attributeOwnershipAcquisition() callback will be
received instead)

• instance-attributes for which an ownership transfer was
already in-transit from a remote federate to a federate other
than the canceling federate, such that the transfer was
initiated when the cancellation request was received by the
sender and had not yet arrived when the cancellation request
was received by the recipient (no callback will be received)

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
the cancellation of instance-attribute ownership acquisition.
An exceptional return will result in an entry being made to the
federate’s log file; instance-attribute acquisition is still cancelled.

EXCEPTIONS
RTI::ObjectNotKnown

The object ID specified does not correspond to an object that
has been discovered by the federate.

RTI::AttributeNotKnown
One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::AttributeNotDefined
The attribute handle is not valid in the context of the current
FedExec.

RTI::AttributeAcquisitionWasNotCanceled
One or more of the attribute-instances is not the subject of a
currently outstanding
cancelAttributeOwnershipAcquisition() request.

RTI::AttributeAlreadyOwned
One or more of the instance-attributes is already owned by the
local federate.

RTI::AttributeNotKnown
One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::FederateInternalError
An error internal to the federate has occurred.

SEE ALSO
RTI::AttributeHandleSet
RTI::FederateAmbassador::

attributeOwnershipAcquisitionNotification()
RTI::RTIambassador::

attributeOwnershipAcquisition()
cancelNegotiatedAttributeOwnershipDivestiture()
getAttributeName()

Ownership Management informAttributeOwnership()

HLA-RTI 1.3-Next Generation
B.4-7

B.4.7 informAttributeOwnership()
RTI 1.3-NG
ABSTRACT

This callback informs a federate as to which federate in the
federation owns an instance-attribute. In addition, the RTI notifies
a federate of attributes that are unowned or owned by the RTI
itself, using attributeIsNotOwned or

attributeOwnedByRTI callbacks, respectively.

HLA IF SPECIFICATION
The RTI 1.3 implementation of this method (in conjunction with
attributeIsNotOwned() and attributeOwnedByRTI())
realizes the “Inform Attribute Ownership” Ownership
Management service as specified in the HLA Interface
Specification (§7.16 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

informAttributeOwnership (
RTI::ObjectHandle theObject,
RTI::AttributeHandle theAttribute,
RTI::FederateHandle theOwner

)
throw (

RTI::ObjectNotKnown,
RTI::AttributeNotKnown,
RTI::FederateInternalError

)

ARGUMENTS
theObject

the object instance whose instance-attribute is owned by the
specified federate

theAttribute
the instance-attribute which is owned by the specified federate

theOwner
the federate which owns the specified instance-attribute

DESCRIPTION
This callback informs the federate that the specified instance-
attribute is owned by the specified federate. This advisory is
provided in response to a queryAttributeOwnership() service
invocation by the federate.
If the instance-attribute is owned by the querying federate, this
callback will occur synchronously with respect to the
queryAttributeOwnership() invocation. Otherwise, this
callback will occur during a subsequent invocation of tick() by
the querying federate (i.e., the ownership query is sent to the
federation and a response returned asynchronously).
Note that an instance-attribute for which a federate has outstanding
negotiated divestiture requests is still considered to be held by the
federate until ownership is assumed by another federate.

RETURN VALUES
A non-exceptional return from this service indicates that the
federate acknowledges the ownership advisory.

RTI1.3-NG NOTES
• If an instance-attribute is unowned, the querying federate will

receive an attributeIsNotOwned() callback.

• If an instance-attribute is owned by the RTI itself, the querying
federate will receive an attributeOwnedByRTI() callback.

• If an instance-attribute is non-existent in the federation or is in-
transit between federates when the query is made, the querying
federate will receive no response callback.

EXCEPTIONS
RTI::ObjectNotKnown

The specified object handle does not correspond to an object
known by the federate's object manager.

RTI::AttributeNotKnown
The specified attribute handle is not valid in the context of the
specified object instance.

RTI::FederateInternalError
An error internal to the federate has occurred.

SEE ALSO
RTI::FederateAmbassador::

attributeIsNotOwned()
attributeOwnedByRTI()

RTI::RTIambassador::
queryAttributeOwnership()

Ownership Management requestAttributeOwnershipAssumption()

HLA-RTI 1.3-Next Generation
B.4-8

B.4.8 requestAttributeOwnershipAssumption()
RTI 1.3-NG
ABSTRACT

This callback informs a federate of the fact that a specified set of
instance-attributes of a specified object instance has become
available for acquisition. The federate is requested to assume
ownership of some or all of the instance-attributes, if possible.

HLA IF SPECIFICATION
This method realizes the “Request Attribute Ownership
Assumption” Ownership Management service as specified in the
HLA Interface Specification (§5.2 7.4 and 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

requestAttributeOwnershipAssumption (
RTI::ObjectHandle theObject,

const RTI::AttributeHandleSet& offeredAttributes,
const char *theTag
)

throw (
RTI::ObjectNotKnown
RTI::AttributeNotKnown,
RTI::AttributeAlreadyOwned,
RTI::AttributeNotPublished,
RTI::FederateInternalError

)

ARGUMENTS
theObject

the object instance whose instance-attributes are available for
acquisition

offeredAttributes
the instance-attributes which are available for acquisition

theTag
the string that was provided as an argument to the divestiture
request (or the empty string if the divestiture occurred
implicitly as a result of some other service invocation)

DESCRIPTION
This callback informs the federate that the specified instance-
attributes have become unowned. A federate will only receive
such a notification for an instance-attribute if the federate is
publishing the corresponding class-attribute at the level of the
object class by which the instance is discovered by the federate.
The announcement may result from

• an explicit divestiture (negotiated or unconditional) by a
remote federate

• a remote federate resignation using the
RTI::RELEASE_ATTRIBUTES or
RTI::DELETE_OBJECTS_AND_RELEASE_ATTRIBUTES
ownership-resolution policy

The federate subsequently communicates to the RTI that instance-
attributes (if any) it is willing to assume ownership of. If the
federate is willing to assume ownership of any instance-attributes,
this fact is communicated to the LRC of the divesting federate.
Ownership will be transferred to the federate whose response is
received first by the LRC of the releasing federate. If a federate
receives ownership of any instance-attributes because of a response
to an acquisition request, it will subsequently receive notification
in the form of an
attributeOwnershipAcquisitionNotification() callback.

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
the assumption request. See release notes for more details.

NOTES
• This callback may also occur as a result of an unpublication by a

remote federate: any locally owned instance-attributes of object
instances known to the federate as the unpublished class will be
implicitly divested. Any such instance-attributes subsequently
acquired by the unpublishing federate (because of ownership
management services outstanding at the time of the unpublication)
will also be implicitly divested as they are acquired.

• The federate communicates the set of instance-attributes it is
willing to assume ownership of though a subsequent invocation of
attributeOwnershipAcquisition() or
attributeOwnershipAcquisitionIfAvailable(). No
response is necessary if the federate is not willing to assume
ownership of any instance-attributes.

• The federate will be notified of the instance-attributes it has
acquired ownership of (if any) through the
attributeOwnershipAcquisitionNotification() callback.
If the federate responded using
attributeOwnershipAcquisitionIfAvailable(), it may
receive an attributeOwnershipUnavailable() callback for
those instance-attributes that were not acquired. Otherwise, it will
receive no subsequent callbacks related to instance-attributes that
were not acquired.

EXCEPTIONS
RTI::ObjectNotKnown

The object ID does not correspond to an object previously
discovered by the federate.

RTI::AttributeNotKnown
One or more of the specified attribute handles is not valid
within the context of the specified object class.

RTI::AttributeAlreadyOwned
One or more of the attributes contained in the set is already
owned by the federate.

RTI::AttributeNotPublished
One or more of the specified attributes are not currently
published by the local federate.

RTI::FederateInternalError
An error internal to the federate has occurred.

SEE ALSO
RTI::AttributeHandleSet

 RTI::FederateAmbassador::
attributeOwnershipAcquisitionNotification()

 attributeOwnershipUnavailable()
RTI::RTIambassador::
 negotiatedAttributeOwnershipDivestiture()
 publishObjectClass()
 resignFederationExecution()
 subscribeObjectClassAttributes()
 unconditionalAttributeOwnershipDivestiture()
 unpublishObjectClass()
 unsubscribeObjectClass()

Ownership Management requestAttributeOwnershipRelease()

HLA-RTI 1.3-Next Generation
B.4-9

B.4.9 requestAttributeOwnershipRelease()
RTI 1.3-NG
ABSTRACT

This callback informs a federate of a request by a remote federate
to acquire a specified set of instance-attributes of a specified object
instance owned by the federate.

HLA IF SPECIFICATION
This method realizes the “Request Attribute Ownership Release”
Ownership Management service as specified in the HLA Interface
Specification (§7.10 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
requestAttributeOwnershipRelease (

RTI::ObjectHandle theObject,
const RTI::AttributeHandleSet& candidateAttributes,
const char *theTag
)

throw (
RTI::ObjectNotKnown,
RTI::AttributeNotKnown,
RTI::AttributeNotOwned,
RTI::FederateInternalError

)

ARGUMENTS
theObject

the object instance whose instance-attributes have been
requested

candidateAttributes
the instance-attributes which have been requested

theTag
the string that was provided as an argument to the acquisition
request; this string is not interpreted by the RTI and may be
used to encode federation-specified information about the
acquisition request

DESCRIPTION
This callback informs the federate that the specified instance-
attributes were the subject of an intrusive acquisition request made
by another federate (i.e., a request to acquire instance-attributes
even if they are already owned). Upon receipt of such, the federate
should communicate to the RTI the subset of the instance-
attributes for which it is willing to relinquish ownership. If this
subset is non-empty, ownership of the instance-attributes will be
immediately transferred to the requesting federate. The acquiring
federate will be notified of such using the
attributeOwnershipAcquisitionNotification() callback.

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
the ownership release request. See release notes for more details.

NOTES
• The RTI 1.3 attributeOwnershipAcquisition() service is

used to make intrusive acquisition requests; the
attributeOwnershipAcquisitionIfAvailable() service is
used to make non-intrusive acquisition requests.

• The federate communicates the set of instance-attributes for which
it is willing to release ownership using the
unconditionalAttributeOwnershipDivestiture(),
negotiatedAttributeOwnershipDivestiture(), or
attributeOwnershipReleaseResponse() service. No

response is necessary if the federate is unwilling to release any
instance-attributes.

• If the federate responds using the
negotiatedAttributeOwnershipDivestiture() service, it
will immediately receive an
attributeOwnershipDivestitureNotification() callback
(i.e., before the tick() service invocation resulting in the
requestAttributeOwnershipRelease() has returned.)
Otherwise, the releasing federate will receive no further
notification that the instance-attributes have been released.

EXCEPTIONS
RTI::ObjectNotKnown

The object ID specified does not correspond to an object that
has been discovered by the federate.

RTI::AttributeNotKnown
One or more of the specified attribute handles is not valid in
the context of the specified object or the attribute ownership
token is not held by the federate.

RTI::AttributeNotOwned
One or more of the specified attribute-instances is not owned
by the local federate.

RTI::FederateInternalError
An error internal to the federate has occurred.

SEE ALSO
RTI::AttributeHandleSet
RTI::FederateAmbassador::

attributeOwnershipAcquisitionNotification()
attributeOwnershipDivestitureNotification()

 RTI::RTIambassador::
attributeOwnershipAcquisition()
attributeOwnershipReleaseResponse()
negotiatedAttributeOwnershipDivestiture()
unconditionalAttributeOwnershipDivestiture()

B.5 Time Management

Time Management requestRetraction()

HLA-RTI 1.3-Next Generation
B.5-1

B.5.1 requestRetraction()
RTI 1.3-NG
ABSTRACT

This callback advises the federate that a previously delivered time-
stamp-ordered (TSO) event has been retracted.

HLA IF SPECIFICATION
This method realizes the “Request Retraction” Time Management
service as specified in the HLA Interface Specification (§8.22 in
version 1.3). This service was an Object Management service in
previous revisions of the specification.

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::RTIambassador::

requestRetraction (
RTI::EventRetractionHandle theHandle

)
throw (

RTI::EventNotKnown,
RTI::FederateInternalError

)

ARGUMENTS
theHandle

the event-retraction handle of the TSO event being retracted

DESCRIPTION
This callback advises the federate that a TSO event previously
delivered to the federate has been retracted using the retract()
service. If an event is still queued for delivery to a federate when a
retraction arrives at the LRC, the event is removed from the queues
and discarded without a requestRetraction() being made.
The RTI simply distributes event retraction notifications to the
relevant federates; it is up to the federation to implement the
desired event-retraction semantics.

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
the retraction of the specified TSO event.

EXCEPTIONS
RTI::EventNotKnown

The retraction handle does not correspond to an event
previously delivered to the local federate.

RTI::FederateInternalError
An error internal to the federate has occurred.

SEE ALSO
RTI::RTIambassador::

retract()

Time Management timeAdvanceGrant()

HLA-RTI 1.3-Next Generation
B.5-2

B.5.2 timeAdvanceGrant()
RTI 1.3-NG
ABSTRACT

This service informs a federate that a previous time advance
request, flush queue request, or next event request has been
completed.

HLA IF SPECIFICATION
This method realizes the “Time Advance Grant” Time
Management service as specified in the HLA Interface
Specification (§8.13 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

timeAdvanceGrant (
const FedTime& theTime

)
throw (

RTI::InvalidFederationTime,
RTI::TimeAdvanceWasNotInProgress,
RTI::FederationTimeAlreadyPassed,
RTI::FederateInternalError

)

ARGUMENTS
theTime

the logical time to which the federate has advanced as a result
of the currently outstanding time-advancement service

DESCRIPTION
This callback advises the federate that the current time-
advancement service (i.e., timeAdvanceRequest(),
timeAdvanceRequestAvailable(), nextEventRequest(),
nextEventRequestAvailable(), or flushQueueRequest())
has completed, as determined by the criteria established by the
particular type of time-advancement service.

Subsequent to a timeAdvanceGrant() callback

• The federate may initiate another time-advancement service.

• The federate may enable time-regulation or time-constraint.

• The federate’s logical time is equal to the specified grant time
and will remain so until the invocation of another time-
advancement service.

• No time-stamp-ordered (TSO) events with a time stamp less
than the grant time will be subsequently delivered to the
federate.

• If the timeAdvanceRequest() or nextEventRequest()
service is in progress, no TSO events with a time stamp equal
to the grant time will be subsequently delivered to the
federate.

If the federate is time-constrained

• No TSO events will be delivered to the federate until a
subsequent invocation of a time-advancement service.

• No receive-ordered (RO) events will be delivered to the
federate until a subsequent invocation of a time-advancement
service unless asynchronous delivery of RO events is enabled.

If a federate is non-time-constrained, the criteria for a time-
advance grant will be trivially met.

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
the completion of the outstanding time-advancement service.
An exceptional return will cause an entry to be made in the
federate's RTI log file; the logical time of the federate is still
advanced.

EXCEPTIONS
RTI::InvalidFederationTime

The specified grant time is invalid.
RTI::TimeAdvanceWasNotInProgress

There is not an outstanding time advance request, next event
request, or flush queue request.

RTI::FederationTimeAlreadyPassed
The specified grant time is less than the current federate
logical time.

RTI::FederateInternalError
An error internal to the federate has occurred.

SEE ALSO
RTI::FedTime
RTI::RTIambassador::
 enableTimeConstrained()
 enableTimeRegulation()
 flushQueueRequest()
 nextEventRequest()
 queryFederateTime()
 queryLBTS()
 tick()
 timeAdvanceRequest()

Time Management timeConstrainedEnabled()

HLA-RTI 1.3-Next Generation
B.5-3

B.5.3 timeConstrainedEnabled()
RTI 1.3-NG
ABSTRACT

This callback advises the federate that time constraint has been
enabled, as per a previous enableTimeConstrained() service
invocation.

HLA IF SPECIFICATION
This method realizes the “Time Constrained Enabled” Time
Management service as specified in the HLA Interface
Specification (§8.6 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

timeConstrainedEnabled (
const RTI::FedTime& theFederateTime

)
throw (

RTI::InvalidFederationTime,
RTI::EnableTimeConstrainedWasNotPending,
RTI::FederateInternalError

)

ARGUMENTS
theFederateTime

the logical time of the federate at which time constraint takes
effect

DESCRIPTION
This callback advises the federate of the successful completion of
an enableTimeConstrained() service invocation. Upon such a
callback, the advantages and limitations associated with time
constraint become effective.
The logical time argument to this callback will be the logical time
of the federate at the point in execution at which the federate
requested time constraint.
RTI 1.3 does not require any negotiation among federates to enable
time constraint, so upon a successful
enableTimeConstrained() invocation, a
timeConstrainedEnabled() callback will be immediately
scheduled for subsequent delivery during an invocation of
tick().

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
that time constraint has taken effect.

EXCEPTIONS
RTI::InvalidFederationTime

The specified grant time is invalid.
RTI::EnableTimeConstrainedWasNotPending

An enableTimeConstrained() request is not currently
outstanding for the local federate.

RTI::FederateInternalError
An error internal to the federate has occurred.

SEE ALSO
RTI::FedTime
RTI::RTIambassador::

enableTimeConstrained()

Time Management timeRegulationEnabled()

HLA-RTI 1.3-Next Generation
B.5-4

B.5.4 timeRegulationEnabled()
RTI 1.3-NG
ABSTRACT

This callback advises the federate that time regulation has been
enabled per a previous enableTimeRegulation() service
invocation.

HLA IF SPECIFICATION
This method realizes the “Time Regulation Enabled” Time
Management service as specified in the HLA Interface
Specification (§8.3 in version 1.3).

SYNOPSIS
#include <RTI.hh>

virtual
void
RTI::FederateAmbassador::

timeRegulationEnabled (
const RTI::FedTime& theFederateTime

)
throw (

RTI::InvalidFederationTime,
RTI::EnableTimeRegulationWasNotPending,
RTI::FederateInternalError

)

ARGUMENTS
theFederateTime

the logical time at which regulation as been enabled

DESCRIPTION
This callback advises the federate of the successful completion of
an enableTimeRegulation() service invocation. Upon such a
callback, the advantages and limitations associated with time
regulation become effective.
The federate’s logical time upon enabling time regulation will be
the minimum of the effective federate logical time specified to the
enableTimeRegulation() service invocation and the current
lower-bound time-stamp of the federation.
RTI 1.3 does not require any negotiation among federates to enable
time regulation, so upon a successful enableTimeRegulation()
invocation, a timeRegulationEnabled() callback will be
immediately scheduled for subsequent delivery during an
invocation of tick().

RETURN VALUES
A non-exceptional return indicates that the federate acknowledges
that time regulation has taken effect.

EXCEPTIONS
RTI::InvalidFederationTime

The specified logical time argument does not represent a valid
point on the federation time axis.

RTI::EnableTimeRegulationWasNotPending
An enableTimeRegulation() request is not currently
outstanding for the local federate.

RTI::FederateInternalError
An error internal to the federate has occurred.

SEE ALSO
RTI::FedTime
RTI::RTIambassador::

enableTimeRegulation()

	B	Class RTI::FederateAmbassador	ii
	Federation Management

	announceSynchronizationPoint()
	federationNotRestored()
	federationNotSaved()
	federationRestoreBegun()
	federationRestored()
	federationSaved()
	federationSynchronized()
	initiateFederateRestore()
	initiateFederateSave()
	requestFederationRestoreFailed()
	requestFederationRestoreSucceeded()
	synchronizationPointRegistrationFailed()
	synchronizationPointRegistrationSucceeded()
	Declaration Management

	startRegistrationForObjectClass()
	stopRegistrationForObjectClass()
	turnInteractionsOff()
	turnInteractionsOn()
	Object Management

	attributesInScope()
	attributesOutOfScope()
	discoverObjectInstance()
	provideAttributeValueUpdate()
	receiveInteraction()
	turnUpdatesOffForObjectInstance()
	turnUpdatesOnForObjectInstance()
	Ownership Management

	attributeIsNotOwned()
	attributeOwnedByRTI()
	attributeOwnershipAcquisitionNotification()
	attributeOwnershipDivestitureNotification()
	attributeOwnershipUnavailable()
	confirmAttributeOwnershipAcquisitionCancellation()
	informAttributeOwnership()
	requestAttributeOwnershipAssumption()
	requestAttributeOwnershipRelease()
	Time Management

	requestRetraction()
	timeAdvanceGrant()
	timeRegulationEnabled()

